
  

 

Abstract—Applying electromyographic (EMG) signal pattern 

recognition to artificial leg control is challenging because leg 

EMGs are non-stationary. Time-frequency features are suitable 

for representing non-stationary signals; however, the 

computation complexity to extract time-frequency features is 

too high that current embedded systems applied for artificial 

limb control are inadequate for real-time computing. The aim of 

this study was to quantify the computation speed of Graphic 

Processor Unit (GPU) on EMG time-frequency feature 

extraction. The computation time derived from a GPU was 

compared to that derived from a general purpose CPU. The 

results indicated that GPU significantly increased the 

computation speed. When the size of EMG analysis window was 

set to 100 ms, the GPU extracted EMG time-frequency features 

over 50 times faster than the CPU setting. Therefore, high 

performance GPU shows a great promise for EMG-controlled 

artificial legs and other medical applications that need high-

speed and real-time computation. 

Index Terms—Electromyography, control of artificial limbs, 

embedded system, high performance computing. 

I. INTRODUCTION 

lectromyographic (EMG) signals recorded from the 

residual limb of individuals with limb amputations are 

effective neural control signals for powered artificial 

limbs [1]. Great success in multifunctional artificial arm 

control has been realized by pattern recognition (PR) of 

EMG signals [2-7].  Currently, our research group attempted 

to apply EMG PR algorithms to artificial leg control. 

Compared to upper-limb prosthesis control, the difficulties 

of EMG PR in artificial leg control are two-fold.  (1) The 

EMG signals recorded from the leg are non-stationary and 

(2) fast system response is required to ensure the user’s 

safety for prosthesis use. To address these challenges, we 

developed a new, phase-dependent EMG PR strategy to 

classify the user’s locomotion modes [8]. To achieve a 

prompt time response, four time-domain features [9] in each 

of 11 EMG channels and a linear discriminant analysis 

(LDA)-based classifier were applied due to their 

computational simplicity. The offline testing results [8] 

showed over 90% classification accuracy, which was 

promising. However, this accuracy was still not enough for 

the safe use of artificial legs because any error might lead to 

a fall of the user. A previous study [4] compared the 

 
This work was supported in part by the National Institute on Disability 

and Rehabilitation Research, U.S. Department of Education (Grant 

H133F080006) and RI Science and Technology Advisory Council (RIRA-

2009-27). 

W. Xiao, Q. Yang, Y. Sun, and H. Huang are with the Department of 

Electrical, Computer, and Biomedical Engineering, Kingston, RI, 02881 

USA (corresponding author: H. Huang: 401-874-2385; fax: 401-782-6422; 

e-mail: huang@ele.uri.edu).  

classification performance among different classifiers and 

EMG features on non-stationary EMG signals offline. The 

result showed that time-frequency features outperformed 

time-domain features, while the type of classifier did not 

significantly influence the classification performance. 

Therefore, time-frequency features, in lieu of time-domain 

features, should be applied to non-stationary leg EMGs in 

order to accurately identify user locomotion mode for neural 

control of artificial legs.  

Compared to time-domain features, the implementation 

of time-frequency features significantly increases 

computation complexity because it requires additional time-

frequency signal transformation and a calculation for feature 

dimension reduction [3]. For example, given the number of 

EMG channels is 11 used in [8] and the EMG sampling rate 

is 1000 Hz, the total number of multiplication operations is 

O(10
5
) for computing Cohen’s class time-frequency 

representations [10] of 100 ms EMG data, O(10
15

) for 

feature (a 1.1×10
5
-by-1 vector) dimension reduction during 

the training of a classifier when using principle component 

analysis (PCA)[11], and O(10
8
) for dimension reduction 

during real-time testing if 1% of the feature dimension is 

kept. Obviously, the computational speed of current 

embedded systems used in C-leg® [12] or Rheo Knee [13] 

are insufficient to identify the user’s intent within tens of 

milliseconds when time-frequency domain features are 

applied.  

In this study, we explored a high performance embedded 

controller with a built-in Graphic Processor Unit (GPU) for 

EMG time-frequency feature extraction. GPU is a single chip 

processor originally designed for the computation related to 

3D graphic rendering. Recently, many researchers and 

developers have become interested in leveraging the power 

of GPUs for general-purpose computing. There are two 

reasons for the explosive research efforts in general purpose 

GPU computing. First, the GPUs can provide an 

extraordinary speedup for applications that show inherent 

data parallelism. For example, NVIDIA GeForce 8800 GTX 

[14] can have 367 GFLOPS peak performance with 128 

cores, which is 20-50 times faster than current high-end 

microprocessors. Secondly, GPUs have been built for 

commodity PC graphic cards with large volume productions 

resulting in very low price. Currently a very powerful 

graphic card cost only a few hundred dollars. The high 

performance/cost ratio has attracted many researchers and 

engineers to adopt the GPU for data intensive general 

purpose computations. Typically, a GPU is a massively 

parallel machine equipped with multiple cores for concurrent 

execution of thousands of independent threads. Each core 
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executes the same code on different data sets. Such a Single 

Instruction Multiple Data (SIMD) architecture is favorable 

for high-throughput numerical computation. Many numerical 

problems, such as matrix computations and linear algebra 

operations, can be easily parallelized into multiple identical 

subtasks without data dependency, thus a notable 

performance speedup is achieved on the GPUs [15, 16]. In 

signal processing, most analysis tools or algorithms require 

matrix or vector computations that can be naturally tailored 

to GPUs to achieve high performance that would not have 

been possible using general purpose microprocessors. To 

quantify the computational capability of GPUs applied for 

time-frequency feature-based EMG pattern recognition, we 

developed an analytical algorithm for one channel EMG 

signal and implemented it on both the CPU and GPU 

architecture. We measured the results and compared the 

computation time for both cases. The results demonstrated 

that the GPU implementation can provide much faster 

response time than the CPU. We have observed up to two 

orders of magnitude performance gain (100 times) as 

compared to the general purpose CPU, which is promising 

for real-time EMG PR based on time-frequency feature sets. 

II. METHODS 

A. EMG Data Collection 

This study was conducted with Institutional Review 

Board (IRB) approval and the informed consent of the 

recruited subject. One channel of EMG from the rectus 

femoris was collected from an able-bodied male subject 

during his level ground walking. An EMG electrode was 

placed on the belly of the muscle, and the ground electrode 

was placed on the bony part of the knee. A myomonitor® 

wireless EMG system (Delsys Inc, MA, USA) was applied to 

collect the EMG data at a sampling rate of 1000 Hz.  

B. Algorithms for Time-Frequency Feature Extraction 

The analytical algorithm included two parts: training and 

testing. The steps for feature extraction were demonstrated in 

Fig. 1. For both training and testing procedure, the time-

frequency features were extracted in every analysis window. 

Next, time-frequency transformation of the EMG signal was 

conducted. The Hilbert transform [17] was used to convert 

the real-value EMG signal into the complex-value signal 

first. The discrete Hilbert transform of a signal x(k) is 

defined as  
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where N is the number of samples in an analysis window. 

 

After obtaining the analytical signal by the Hilbert transform, 

Smoothed Pseudo-Wigner-Ville Distribution (SPWVD) [18] 

was used to represent the signal in a time-frequency domain. 

The calculation formula is defined as  
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where Wf is the smoothing window in the frequency domain 

with length 2N+1, and Wt is the smoothing window in the 

time domain with length 2M+1. Then, the resulted time-

frequency representation (a matrix) was reorganized into an 

EMG feature vector (a vector). Due to the high 

dimensionality of EMG time-frequency feature vectors, a 

dimension reduction algorithm is necessary to allow efficient 

classification. Here, we used principle component analysis 

(PCA) to reduce the dimension of feature vectors. During the 

offline training procedure, the feature vector in one analysis 

window was one observation. PCA was conducted on the 

data matrix, composed of the feature vectors of several 

observations. The number of principle components was set to 

10% of the dimension of feature vectors. The algorithm of 

PCA involves solving the Eigen values and vectors, which is 

time-consuming.  To enhance the computation speed, we 

chose the Nonlinear Iterative Partial Least Squares 

(NIPALS) algorithm to approximate PCA computation [19]. 

During the testing procedure, the feature dimension was 

reduced directly by projecting the feature vectors to the 

principle components obtained in the training procedure. 

Finally, the feature vectors were fed to a classifier to identify 

the user’s movement intent. 

C. Testing Setup and Procedure 

The analytical algorithm was implemented on both CPU 

and GPU architectures. The algorithm was ran on a Dell 

Dimension 8400 desktop PC equipped with a CPU (Intel 

Pentium 4 with HT technology, 3GHz) and a GPU (NVIDA 

9500GT graphic card, Multi-core parallel processor, 

1.4GHz)[14].  The computation times for Hilbert transform, 

SPWVD, and PCA with different window sizes were 

measured for both the CPU and GPU settings.  

III. RESULTS 

 

    
 

Fig. 2. Computational time of Hilbert transformation.  
Fig. 1. Block diagram of EMG time-frequency feature extraction. 
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Fig. 2 shows the computation time of the Hilbert 

transform. The GPU implementation outperformed the CPU 

for all window sizes. When the applied window was 100 ms, 

the GPU setting was about 50 times faster than the CPU 

case. 

Similar results for computing smoothed pseudo-Wigner-

Ville distribution as those for the Hilbert transform 

calculation were observed (Fig. 3).  Note that we used the 

latest CUFFT 2.1[20]  and FFTW 3.2.1[21] libraries to 

calculate SPWVD, but we did not optimize the Hilbert 

transform. Therefore, SPWVD had faster response time than 

the Hilbert transform in some parameter settings. 

 
Fig. 4 shows the time response of the PCA computation 

when 8 principle components were selected. The GPU 

produced much faster response than the CPU with up to 30 

times performance improvements. Another observation is 

that the performance speedup of the GPU over the CPU 

increased as the size of analysis window increased. That is to 

say, the larger the window size, the more speedup can be 

obtained using the GPU. This result can be attributed to the 

better parallelism with a larger data set.  Fig. 5 shows the 

computation time for selecting six different numbers of 

principle components when the window size was 100 ms. 

Compared to the CPU, the performance speedup of the GPU 

was 144 times faster. Fig. 6 demonstrates the results for 

dimension reduction in the testing procedure. Once again, 

dramatic speedup was observed by using the GPU as 

compared to the CPU architecture. 

IV. DISCUSSION 

From the measured outcomes, we found that the most 

time was spent on the PCA computation for both the CPU 

and GPU architectures. Therefore, PCA is the bottleneck of 

our analytical algorithm. Currently we used the NIAPALS 

method to approximate PCA. This algorithm works well for 

a small size matrix; however, if the matrix is large, other 

more efficient algorithms should be considered. One possible 

optimization is the divide-on-conquer strategy that partitions 

the single big matrix into multiple smaller matrices. PCA is 

conducted on each block matrix. Then the global principle 

components are the combination of all the “block” principle 

components. In computational terms, it is called data/loop 

blocking that can significantly improve computation 

performance due to increased data locality, parallelism, and 

communication efficiency. Since there is no data dependence 

among different block matrices, we can perform the PCA for 

each block matrix simultaneously on the GPU architecture. 

Our theoretical analysis and preliminary experiment showed 

that the block PCA is potential to improve the performance 

of the PCA. We will address PCA optimization in our future 

research. 

In this study, the selected analytic algorithm was 

relatively complicated because our intent was to indicate the 

maximum performance of the GPU.  When using feature 

vectors with 10,000 dimension (derived from 100ms window 

          
 

Fig. 6. Computation time of dimension reduction during the testing 

procedure. The applied window size was 100 ms.  

          
 

Fig. 5. Computation time of NIPALS when a different number of 

principle components were selected. The applied window size was 

100 ms.  

          
 

Fig. 4. Computation time of NIPALS to obtain 8 principle 

components during the training procedure. 

       
 

Fig. 3. Computation time of smoothed pseudo-Wigner-Ville 

distribution. 
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size) and 16 principle components, the training procedure 

took around 1.5 seconds for GPU but over 100 seconds for 

CPU. In the real-time testing (result was not shown), the 

GPU can extract the features from a 100ms analysis window 

within 20 ms, sufficient for real-time EMG PR in artificial 

leg control. Hence, GPU is potential for design of EMG-

controlled artificial legs. 

The limitation of this work is that only one EMG channel 

was used. In real application, multiple channels will be 

considered, which further increases the feature dimension 

and computational complexity. However, the selected 

analytic algorithm in this study was relatively complex; other 

simple methods should be investigated to improve the 

computation efficiency without deteriorating the 

classification performance. In addition, some prior 

knowledge of EMG signals can be useful to reduce the 

feature dimension before computing PCA.  

V. CONCLUSIONS 

In this paper, we have presented a design and 

implementation of a new set of parallel algorithms for time-

frequency feature exaction from EMG. Our algorithms have 

been tested and measured on both a commodity embedded 

system with a GPU and a general purpose PC. Because of 

the inherent parallelism that exists in these computations, we 

are able to effectively parallelize the algorithm on the GPU. 

Measurement results have shown dramatic speedup of the 

computation on the GPU system as compared to the CPU 

architecture. Up to two orders of magnitude speedup have 

been observed. With continued advancement in performance 

and decrease in cost, GPUs show a great promise for real 

time and high speed computation for EMG pattern 

recognition and eventual application to neural-controlled 

artificial legs. We are currently working on further 

optimization of these algorithms. 
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